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Abstract

An overview is given of the several methods in use for the nonparametric estimation
of the differential entropy of a continuous random variable. The properties of various
methods are compared. Several applications are given such as tests for goodness-of-fit,
parameter estimation, quantization theory and spectral estimation.

I Introduction

Let X be a random vector taking values in Rd with probability density function (pdf) f(x),

then its differential entropy is defined by

H(f) = −
∫
f(x) ln f(x)dx. (1)

We assume that H(f) is well-defined and is finite.

The concept of differential entropy was introduced in Shannon’s original paper ([55]).

Since then, entropy has been of great theoretical and applied interest. The basic properties

∗This research was supported by the Scientific Exchange Program between the Belgian Academy of
Sciences and the Hungarian Academy of Sciences in the field of Mathematical Information Theory, and
NATO Research Grant No. CRG 931030.

1



of differential entropy are described in Chapter 9 of Cover and Thomas [10]. Verdugo Lazo

and Rathie [64] provide a useful list containing the explicit expression of H(f) for many

common univariate pdf’s. Ahmed and Gokhale [1] calculated H(f) for various multivariate

pdf’s.

The differential entropy has some important extremal properties:

(I) If the density f is concentrated on the unit interval [0, 1] then the differential entropy is

maximal iff f is uniform on [0, 1], and then H(f) = 0.

(II) If the density is concentrated on the positive half line and has a fixed expectation then

the differential entropy takes its maximum for the exponential distribution.

(III) If the density has fixed variance then the differential entropy is maximized by the

Gaussian density.

Many distributions in statistics can be characterized as having maximum entropy. For a

general characterization theorem see [38].

II Estimates

II.1 Criteria and conditions

If for the i.i.d. sample X1, . . . Xn Hn is an estimate of H(f) then we consider the following

types of consistencies:

Weak consistency:

lim
n→∞

Hn = H(f) in probability. (2)

Mean square consistency:

lim
n→∞

E{(Hn −H(f))2} = 0. (3)

Strong consistency:

lim
n→∞

Hn = H(f) a.s. (4)

Root-n consistency results are either of form of asymptotic normality, i.e.,

lim
n→∞

n1/2(Hn −H(f)) = N(0, σ2) (5)

in distribution, or L2 rate of convergence:

lim
n→∞

nE{(Hn −H(f))2} = σ2. (6)

Next we list the usual conditions on the underlying density.

Smoothness conditions:
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S1: f is continuous.

S2: f is k times differentiable.

Tail conditions:

T1: H([X]) <∞, where [X] is the integer part of X.

T2: inff(x)>0 f(x) > 0.

Peak conditions:

P1:
∫
f(ln f)2 <∞. (This is also a mild tail condition.)

P2: f is bounded.

II.2 Plug-in estimates

The plug-in estimates of entropy are based on a consistent density estimate fn of f such that

fn depends on X1, . . . Xn.

(i) We first consider the integral estimate of entropy, which is of the form

Hn = −
∫
An
fn(x) ln fn(x)dx, (7)

where, with the set An one typically excludes the small or tail values of fn. The first such

estimator was introduced by Dmitriev and Tarasenko [17], who proposed to estimate H(f)

by (7) for d = 1, where An = [−bn, bn] and fn is the kernel density estimator. They showed

the strong consistency of Hn defined by (7). See also Prakasa Rao [49]. Mokkadem [44]

calculated the expected Lr error of this estimate.

The evaluation of the integral in (7) however requires numerical integration and is not

easy if fn is a kernel density estimator. Joe [37] considers estimating H(f) by (7) when f is

a multivariate pdf, but he points out that the calculation of (7) when fn is a kernel estimator

gets more difficult for d ≥ 2. He therefore excludes the integral estimate from further study.

The integral estimator can however be easily calculated if, for example, fn is a histogram.

This approach is taken by Györfi and van der Meulen [29]. If {x ∈ An} = {fn(x) ≥ an}
with 0 < an → 0, then the strong consistency has been proved under the only condition T1.

Carbonez, et al. [7] extended this approach to the estimation of H(f) when the observations

are censored.

(ii) The resubstitution estimate is of the form

Hn = − 1

n

n∑
i=1

ln fn(Xi). (8)

Ahmad and Lin [2] proposed estimating H(f) by (8), where fn is a kernel density estimate.

They showed the mean square consistency of (8). Joe [37] considered the estimation of H(f)
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for multivariate pdf’s by an entropy estimate of the resubstitution type (8), also based on a

kernel density estimate. He obtained asymptotic bias and variance terms, and showed that

non-unimodal kernels satisfying certain conditions can reduce the mean square error. His

analysis and simulations suggest that the sample size needed for good estimates increases

rapidly with the dimension d of the multivariate density. His results rely heavily on conditions

T2 and P2. Hall and Morton [35] investigated the properties of an estimator of the type

(8) both when fn is a histogram density estimator and when it is a kernel estimator. For

histogram they show (5) under certain tail and smoothness conditions with

σ2 = V ar(ln f(X)). (9)

They point out that the histogram-based estimator can only be root-n consistent when

d = 1 or 2, and conclude it is particularly attractive for d = 1, since when d = 2 any

root-n consistent histogram-based estimator of entropy will have significant bias. They

suggest an empirical rule for the binwidth, using a penality term. They study the effects of

tail behaviour, distribution smoothness and dimensionality on convergence properties, and

argue that root-n consistency of entropy estimation requires appropriate assumptions about

each of these three features. Their results are valid for a wide class of densities f having

unbounded support. They also suggest an application to projection pursuit.

(iii) The next plug-in estimate is the splitting data estimate. Here one decomposes the

sample into two sub-samples: X1, . . . Xl and X∗1 , . . . X
∗
m, n = l + m. Based on X1, . . . Xl

one constructs a density estimate fl, and then, using this density estimate and the second

sample, estimates H(f) by

Hn = − 1

m

m∑
i=1

I[X∗i ∈Al] ln fl(X
∗
i ). (10)

Györfi and van der Meulen used this approach in [29] for fl being the histogram density

estimate, in [30] for fl being the kernel density estimate, and in [31] for fl being any L1-

consistent density estimate such that [X∗i ∈ Al] = [fl(X
∗
i ) ≥ al], 0 < al → 0. Under

some mild tail and smoothness conditions on f the strong consistency is shown for general

dimension d.

(iv) The final plug-in estimate is based on a cross-validation estimate or leave-one-out

density estimate. If fn,i denotes a density estimate based on X1, . . . Xn leaving Xi out, then

the corresponding density estimate is of the form

Hn = − 1

n

n∑
i=1

I[Xi∈An] ln fn,i(Xi). (11)
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Ivanov and Rozhkova [36] proposed such entropy estimate when fn,i is a kernel estimate.

They showed strong consistency, and also made an assertion regarding the rate of convergence

of the moments E|Hn −H(f)|r, r ≥ 1. Hall and Morton [35] also studied entropy estimates

of the type (11) based on kernel estimator. For d = 1, properties of Hn were studied in the

context of Kullback-Leibler loss in [34]. Under some conditions the analysis in [35] yields a

root-n consistent estimate of the entropy when 1 ≤ d ≤ 3. The authors point out that the

case d = 2 is of practical interest in projection pursuit.

II.3 Estimates of entropy based on sample-spacings.

Since sample-spacings are defined only for d = 1, we assume that X1, . . . , Xn is a sample of

i.i.d. real valued random variables. Let Xn,1 ≤ Xn,2 ≤ . . . ≤ Xn,n be the corresponding order

statistics. ThenXn,i+m−Xn,i is called a spacing of orderm, orm-spacing (1 ≤ i < i+m ≤ n).

Based on spacings it is possible to construct a density estimate:

fn(x) =
m

n

1

Xn,im −Xn,(i−1)m

if x ∈ [Xn,(i−1)m, Xn,im). This density estimate is consistent if, as n→∞,

mn →∞, mn/n→ 0. (12)

The estimate of entropy based on sample-spacings can be derived as a plug-in integral es-

timate using a spacing density estimate. However, surprisingly one can get a consistent

spacings based entropy estimate from a non-consistent spacings density estimate, too.

(i) We consider first the m-spacing estimate for fixed m:

Hm,n =
1

n

n−m∑
i=1

ln(
n

m
(Xn,i+m −Xn,i))− ψ(m) + lnm, (13)

where ψ(x) = −(ln Γ(x))′ is the digamma function. Then the corresponding density esti-

mate is not consistent. This implies that in (13) there is an additional term correcting the

asymptotic bias. For uniform f the consistency of (13) has been proved by Tarasenko [57]

and Beirlant and van Zuijlen [4]. Hall [32] proved the weak consistency of (13) for densities

satisfying T2 and P2. Under the conditions T2 and P2 the asymptotic normality of Hm,n

in form of (5) was studied by Cressie [11], Dudewicz and van der Meulen [19], Hall [32] and

Beirlant [3], who all proved (5) under T2 and P2 with

σ2 = (2m2 − 2m+ 1)ψ′(m)− 2m+ 1 + V ar(ln f(X)). (14)
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For m = 1 (14) yields

σ2 =
π2

6
− 1 + V ar(ln f(X)). (15)

Dudewicz and van der Meulen [21] proposed to estimate H(f) by H(f̂), where f̂ is the

empiric pdf, derived from a smoothed version of the empirical distribution function. This

led to the introduction of the notion of empiric entropy of order m.

(ii) In order to decrease the asymptotic variance consider next the mn-spacing estimate

with mn →∞:

Hn =
1

n

n−mn∑
i=1

ln(
n

mn

(Xn,i+mn −Xn,i)). (16)

This case is considered in the papers of Vasicek [63], Dudewicz and van der Meulen [19],

Beirlant and van Zuijlen [4], Beirlant [3], Hall [33] and van Es [62]. In these papers the weak

and strong consistencies are proved under (12). Consistencies for densities with unbounded

support is proved only in [57] and [4]. Hall [33] and Van Es [62] proved (5) with (9) if f is

not uniform but satisfies T2 and P2. Hall [33] showed this result also for the non-consistent

choice mn/n → ρ if ρ is irrational. This asymptotic variance is the smallest one for an

entropy estimator if f is not uniform (cf. Levit [40]). If f is uniform on [0, 1] then Dudewicz

and van der Meulen [19] and van Es [62] showed, respectively for mn = o(n1/3−δ), δ > 0, and

for mn = o(n1/3) that

lim
n→∞

(mn)1/2(Ĥn −H(f)) = N(0, 1/3), (17)

for slight modifications Ĥn of the mn-spacing estimate Hn.

II.4 Estimates of entropy based on nearest neighbor distances

The nearest neighbor estimate is defined for general d. Let ρn,i be the nearest neighbor

distance of Xi and the other Xj: ρn,i = minj 6=i,j≤n ‖Xi −Xj‖. Then the nearest neighbor

estimate is

Hn =
1

n

n∑
i=1

ln(nρn,i) + ln 2 + CE, (18)

where CE is the Euler constant: CE = −
∫∞

0 e−t ln tdt. Under some mild conditions like P1

Kozachenko and Leonenko [39] proved the mean square consistency for general d. Tsybakov

and van der Meulen [61] showed root-n rate of convergence for a truncated version of Hn

when d = 1 for a class of densities with unbounded support and exponentially decreasing

tails, such as the Gaussian density. Bickel and Breiman [6] considered estimating a general

functional of a density. Under general conditions on f they proved (5). Unfortunately their

study excludes the entropy.
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III Applications

III.1 Entropy-based tests for goodness-of-fit

Moran [45] was the first to use a test statistic based on 1-spacings for testing the goodness-

of-fit hypothesis of uniformity. Moran’s statistic is defined by

Mn = −
n∑
i=0

ln((n+ 1)(Xn,i+1 −Xn,i)), (19)

with Xn,0 = 0 and Xn,n+1 = 1. Darling [16] showed that under H0 : F (x) = x, 0 ≤ x ≤ 1,

one gets

lim
n→∞

n−1/2(Mn − nCE) = N(0,
π2

6
− 1). (20)

(This limit law is (5) with (15) for f uniform.)

Cressie [11] generalized the notion of 1-spacings to mn-spacings, and considered the test-

ing of uniformity. He showed the asymptotic normality of his test statistic

Ln =
n−mn+1∑
i=1

ln(Xn,i+mn −Xn,i) (21)

under the hypothesis of uniformity (see Sec. II.3 for more details) and under the assumption

that f is a bounded positive step function on [0, 1], and stated this fact, as a generalization,

to hold if f is concentrated on [0, 1], satisfies conditions T2 and P2, and has a finite number

of discontinuities. From this it follows that the test based on rejecting the hypothesis of

uniformity for large negative values of Ln will be consistent. Cressie [11] compared his test

procedure with Greenwood’s ([27]), for which the test statistic is based on the sum of squares

of 1-spacings, in terms of Pitman asymptotic relative efficiency, for a sequence of neighboring

alternatives which converge to the hypotheses of uniformity as n → ∞. Cressie continued

his investigations in [12], [13].

¿From a different point of view, and independently, Vasicek [63] introduced his test

statistic

Ĥn =
1

n

n∑
i=1

ln(
n

2mn

(Xn,i+mn −Xn,i−mn)), (22)

where Xn,j = Xn,n for j > n and Xn,j = Xn,1 for j < 1. His test statistic is very close to the

2mn-spacing entropy estimate (16), and thus to Cressie’s statistic (21). Vasicek [63] proved

that Ĥn is a weak consistent estimate of H(f). Making use of the fact that for fixed variance,

entropy is maximized by the normal distribution, he proposed an entropy based test for the

composite hypothesis of normality, which rejects the null hypothesis if eĤn/S < C = e−1.42,

where S denotes the sample standard deviation. Vasicek [63] provided critical values of
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his test statistic for various values of m and n based on Monte Carlo simulation and also

simulated its power against various alternatives. He found, that compared with other tests

for normality, the entropy-based test performs well against various alternatives. Prescott

([50]), however, raised some questions regarding the protection it provides against heavy-

tailed alternatives. Mudholkar and Lin [46] extended Vasicek’s power simulations for testing

normality and concluded that Vasicek’s test provides strong protection against light-tailed

alternatives.

Using the fact that the uniform distribution maximizes the entropy on [0, 1], Dudewicz

and van der Meulen [19] extended Vasicek’s reasoning and proposed an entropy-based test

for uniformity which rejects the null hypothesis if Ĥn ≤ H∗α,m,n, where H∗α,m,n is set so that

the test has level α for given m and n. Dudewicz and van der Meulen [19] give Monte

Carlo estimates of H∗α,m,n for specific α, m and n and carry out a Monte Carlo study of the

power of their entropy-based test under seven alternatives. Their simulation studies show

that the entropy-based test of uniformity performs particularly well for alternatives which

are peaked up near 0.5, as compared with other tests of uniformity. Their simulation studies

were continued in [22], [23].

Mudholkar and Lin [46] applied the Vasicek logic to develop an entropy-based test for

exponentiality, using the fact that among all distributions with given mean and support

(0,∞), the exponential distribution with specified mean has maximum entropy. Their test

for exponentiality rejects if eĤn/X̄ < e. They showed consistency of their test and evaluated

the test procedure empirically by a Monte Carlo study, for various values of m and n.

Their studies conclude that this entropy-based of exponentiality has reasonably good power

properties. Following the outline in [19], Gokhale [26] formalized the entropy-based test

construction for a broad class of distributions.

As stated in Sec II.3 the asymptotic distribution of mn-spacing entropy estimate has

been shown to be normal under conditions T2 and P2 (including uniformity, excluding the

gaussian and the exponential distribution). Since this convergence to normality is very slow

Mudholkar and Smethurst [47] developed transformation-based methods to accelerate this

convergence. Chaubey, Mudholkar and Smethurst [8] proposed a method for avoiding prob-

lems in approximating the null distributions of entropy-based test statistics by constructing

a jackknife statistic which is asymptotically normal and may be approximated in moderate

sized samples by a scaled t-distribution.

Robinson [53] proposed a test for independence based on an estimate of the Kullback-

Leibler divergence, which is closely related to differential entropy. His estimate is of the

integral (and resubstitution) type. He shows consistency and focuses on testing serial inde-

pendence for time series.
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Parzen [48] considers entropy-based statistics such as (19) and (22) to test the goodness-

of-fit of a parametric model {F (x, θ)}.

III.2 Entropy-based parameter estimation

Cheng and Amin [9], Ranneby [51] and Shao and Hahn [56] proposed a consistent parameter

estimate, where the maximum likelihood estimate is not consistent. Consider a parametric

family of distribution function of real variable

{F (x, θ)}.

Assume that the distribution function of X is F (x, θ0), where θ0 is the true parameter. The

transformed variable

X∗ = F (X, θ)

is [0, 1]-valued, and its distribution is uniform on [0, 1] iff θ = θ0, i.e. its differential entropy is

maximal iff θ = θ0. Thus it is reasonable to maximize an estimate of the differential entropy.

If, for example, the 1-spacings estimate is used then the estimate of the parameter is

θn = argmaxθ
n−1∑
i=1

ln(F (Xn,i+1, θ)− F (Xn,i, θ)).

This estimator is referred to as maximum spacing estimator.

III.3 Differential entropy and quantization

The notion of differential entropy is intimately connected with variable-length lossy source

coding. Here the actual coding rate is the average codelength of a binary prefix code for

the source codewords, but, for the sake of simplicity, it is usually approximated by the

(Shannon) entropy of the source coder output. It turns out that for large rates, the entropy

of the encoder output can be expressed through the differential entropy of the source.

Let X be a real random variable with density f and finite differential entropy H(f),

and assume that the discrete random variable [X] (the integer part of X) has finite entropy.

With these very general conditions Rényi [52] proved that the entropy of the sequence [nX]

behaves as

lim
n→∞

(H([nX])− log n) = H(f) = −
∫
f(x) log f(x)dx, (23)

where log stands for the logarithm of base 2. This shows that for large n the entropy of the

uniform quantizer with step-size 1/n is well approximated by H(f) + log n. Using their own

(slightly less general) version of the above statement, Gish and Pierce [25] showed that for
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the squared distortion D(Q∆), and for the entropy H(Q∆), of the ∆ step-size uniform scalar

quantizer, the following asymptotics holds:

lim
∆→0

[
H(Q∆) +

1

2
log(12D(Q∆))

]
= H(f). (24)

Here f is assumed to satisfy some smoothness and tail conditions. Again, the differential

entropy provides the rule of thumb D(Q∆) ≈ (1/12)2−2[H(Q∆)−H(f)] for small ∆. (24) can

be proved without any additional smoothness and tail conditions (Györfi, Linder, van der

Meulen [28]). The rate and distortion tradeoff depends on the source density only through

the differential entropy. A heuristic generalization of (24) was given by Gersho [24]. For

k-dimensional vector quantizers and large rates R, he derived the formula

D(QR) ≈ ck(P )2−(2/k)[R−H(f)], (25)

where QR is a vector quantizer of entropy R having quantization cells congruent to a polytope

P , and ck(P ) is the normalized second moment of P .

Csiszár [14], [15] investigated the entropy of countable partitions in an arbitrary measure

space. He obtained the following strengthening of Rényi’s result (23): Let X = (X1, . . . , Xk)

be an Rk valued random vector with differential entropy H(f), and assume that [X] =

([X1], . . . , [Xk]) has finite entropy. Then considering partitionsA ofRk into Borel measurable

sets of equal Lebesgue measure ε(A) and maximum diameter δ(A), we have

lim
δ(A)→0

(HA(X) + log ε(A)) = H(f),

where HA(X) is the entropy of the partition A with respect to the probability measure

induced by X. Using this result, Linder and Zeger [42] gave a rigorous proof of (25) for

sources with a finite differential entropy.

Differential entropy is also the only factor through which the Shannon lower bound to the

rate-distortion function depends on the source density. For squared distortion the Shannon

lower bound is

Rk(D) ≥ 1

k
H(fk)−

1

2
log(2πeD),

where Rk(D) is the kth order rate-distortion function of the source having density fk. For

stationary sources, when the differential entropy rate H = limk→∞(1/k)H(fk) exists, the

above lower bound also holds for all D > 0 when (1/k)H(fk) is replaced by H and Rk(D)

is by R(D) = limk→∞Rk(D), the rate distortion function of the source. Both bounds are

asymptotically (when D → 0 ) tight, as was shown by Linkov [43] and by Linder and Zamir

[41], which makes them extremely useful for relating asymptotic quantizer performances to

rate-distortion limits.
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III.4 Applications towards econometrics, spectroscopy and statis-

tical simulations

Theil [58] evaluated the entropy (1) of a density estimate which is fitted to the data by a

maximum entropy principle. Although he did not so note the entropy of the fitted pdf can

be regarded as an estimate of the entropy H(f) of the underlying pdf f . Theil’s estimate

turns out to be equal to Vasicek’s estimate (22) for m = 1, apart from a constant. Theil and

Laitinen [60] applied the method of maximum entropy estimation of pdf’s in econometrics.

Their work is at the beginning of quite a few papers on this topic in this field. For an

overview of this maximum entropy approach for the estimation of pdf’s and the application

of it to problems in econometrics see Theil and Fiebig [59].

Rodrigez and Van Ryzin [54] studied the large sample properties of a class of histogram

estimators whose derivation is based on the maximum entropy principle.

Entropy principles play also a key role in spectroscopy and image analysis. In practice

entropy is not known, but must be estimated from data. For an overview of the available

maximum entropy methods in spectroscopy see [18].

In [20] a method is developed to rank and compare random number generators based on

their entropy-values. Here the entropy of the random number generator is estimated using

(22). A detailed numerical study, ranking 13 random number generators on basis of their

entropy estimate, is carried out in [5].
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[31] Györfi, L. and van der Meulen, E.C. On nonparametric estimation of entropy functionals. in Nonparametric Functional

Estimation and Related Topics Ed. G. Roussas, Kluwer Academic Publisher, 81-95, 1990.

[32] Hall, P. Limit theorems for sums of general functions of m-spacings. Math. Proc. Camb. Phil. Soc, 96, 517-532. 1984.

[33] Hall, P. On powerful distributional tests based on sample spacings. J. Multivariate Statist. 19, 201-225, 1986.

[34] Hall, P. On Kullback-Leibler loss and density estimation. Annals of Statistics, 15, 1491-1519, 1987.

[35] Hall, P. and Morton S. C. On the estimation of the entropy. Ann. Inst. Statist. Math. 45, 69-88, 1993.

[36] Ivanov A. V. and Rozhkova . Properties of the statistical estimate of the entropy of a random vector with a probability

density. Problems of Information Transmission, 17, 171-178, 1981.

[37] Joe H. On the estimation of entropy and other fuunctionals of a multivariate density. Ann. Inst. Statist. Math. 41,

683-697, 1989.

[38] Kagan, A. M., Linnik, Y. V. and Rao, C. R. Characterization Problems in Mathematical Statistics. Wiley, 1973.

[39] Kozachenko, L. F. and Leonenko, N. N. Sample estimate of entropy of a random vector. Problems of Information

Transmission, 23, 95-101, 1987.

[40] Levit B. Ya. Asymptotically optimal estimation of nonlinear functionals Problems of Information Transmission, 14,

65-72, 1978.

[41] T. Linder and R. Zamir, On the asymptotic tightness of the Shannon lower bound. IEEE Trans. Inform. Theory, vol. 40,

pp. 2026–2031, Nov. 1994.

[42] T. Linder and K. Zeger, Asymptotic entropy constrained performance of tessellating and universal randomized lattice

quantization. IEEE Trans. Inform. Theory, vol. 40, pp. 575–579, March 1994.

[43] Y. N. Linkov, Evaluation of epsilon entropy of random variables for small epsilon. Problems of Information Transmission,

vol. 1, pp. 12–18, 1965.

[44] Mokkadem, A. Estimation of the entropy and information for absolutely continuous random variables, IEEE Trans.

Information Theory, 35, 193-196, 1989.

[45] Moran, P. A. P. The random division of an interval. Part I. J. R. Statist. Soc. B, 9, 92-98, 1951.

[46] Mudholkar, G. S. and Lin, C. T. On two applications of characterization theorems to goodness-of-fit. Colloquia Mathe-

matica Soc. János Bolyai, 395-414, 1984.

[47] Mudholkar, G. S. and Smethurst, P. A. Empirically accelerated convergeence of the spacings statistics to normality.

Austral. J. Statist., 32, 129-138, 1990.

[48] Parzen, E. Goodness of fit tests and entropy. J. Combinatorics, Information and System Sciences, 16, 129-136, 1991.

[49] Prakasa Rao, B. L. S. Nonparametric Functional Estimation, Academic Press, 1983.

[50] Prescott, P. On a test for normality based on sample entropy, J. Roy. Statist. Soc. Ser. B. 38, 254-256, 1976.

[51] Ranneby, B. The maximum spacing method. An estimation method related to the maximum likelyhood method. Scand.

J. Statist., 11, 93-112, 1984.

13
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